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Dispersion of solid particles in decaying isotropic turbulence is studied numerically. 
The three-dimensional, time-dependent vclocity field of a homogeneous, non- 
stationary turbulence was computed using the method of direct numerical simulation 
(DNS). A numerical grid containing 963 points was sufficient to  resolve the turbulent 
motion at the Kolmogorov lengthscale for a range of microscale Reynolds numbers 
starting from RA = 25 and decaying to MA = 16. The dispersion characteristics of 
three different solid particles (corn, copper and glass) injected in the flow, were 
obtained by integrating the complete equation of particle motion along the 
instantaneous trajectories of 2 .~2~  particles for each particle type, and then performing 
ensemble averaging. The three different particles are those used by Snyder & Lumley 
(1971), referred to throughout the paper as SL, in their pioneering wind-tunnel 
experiment. Good agreement was achieved between our DNS results and the 
measured time development of the mean-square displacement of the particles. 

The simulation results also include the time development of the mean-square 
relative velocity of the particles, the Lagrangian velocity autocorrelation and the 
turbulent diffusivity of the particles and fluid points. The Lagrangian velocity 
frequency spectra of the particles and their surrounding fluid, as well as the time 
development of all the forces acting on one particle are also presented. In  order to  
distinguish between the effects of inertia and gravity on the dispersion statistics we 
compare the results of simulations made with and without the buoyancy force 
included in the particle motion equation. A summary of the significant results is 
provided in $ 7  of the paper. 

The main objective of the paper is to enhance the understanding of the physics of 
particle dispersion in a simple turbulent flow by examining the simulation results 
described above and answering the questions of how and why the dispersion statistics 
of a solid particle differ from those of its corresponding fluid point and surrounding 
fluid and what influences inertia and gravity have on these statistics. 

1. Introduction 
Since the pioneering experiment of Snyder & Lumley (1971 ; hereinafter referred to 

as SL), many attempts by various researchers have been made to predict numerically 
the particle dispersion statistics observed in the experiment. A drawback common to 
most of these attempts was that the instantaneous velocity of the fluid surrounding 
the particle was determined from the time-averaged Navier-Stokes equations 
together with a turbulence closure model, and an assumed shape of the p.d.f. of the 
velocity. Furthermore, major simplifying assumptions were needed to prescribe the 
residence time of the particle in a large-scale turbulence eddy. I n  fact some analytical 
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studies assumed that the particle resides permanently in an eddy during its lifetime. 
The method of direct numerical simulations (DNS), on the other hand, provides a 
modelling-free, three-dimensional, instantaneous velocity field for the fluid in simple 
turbulent flows. This velocity field can be used to  calculate the three-dimensional 
trajectory of a particle from which the dispersion statistics can be obtained. This is 
the approach we adopted in the work to be presented here. 

Although DNS has been used in the past to compute particle dispersion in 
turbulent flows (Riley & Patterson 1974; Squires & Eaton 1991), none of the 
published studies simulated the SL experiment. Thus, one of the aims of the present 
paper is to illustrate in some detail how DNS can be used to simulate a ‘real’ 
laboratory experiment of particle dispersion in a simple turbulent flow. Because of 
the lower Reynolds number in DNS, certain scaling of the relevant timescales is 
necessary, Another aim is to provide detailed physical information that can be 
obtained only from DNS, about the flow and particle statistics for the SL 
experiment. For example, the time development of the mean square relative velocity 
and all the forces acting on the particle and dispersion statistics of fluid point and 
surrounding fluid were not and could not have been provided by SL. I n  addition, 
dispersion in zero gravity environment of the same particles that were used in the 
experiment of SL is examined to distinguish between the effects of inertia and 
crossing trajectories. Therefore the results presented in this paper complement those 
of SL and provide a rather complete set of data for validating analytical and simpler 
numerical models of turbulent dispersion of solid particles. 

The work to be described here is part of a study of particle dispersion and 
turbulence modulation in unsheared and sheared turbulence. Preliminary results of 
this work have been presented in Elghobashi & Truesdell (1989a, b ,  1991). The 
present paper considers only the one-way coupling case, i.e. particle dispersion 
without turbulence modulation. The study of two-way coupling is presented 
elsewhere (Elghobashi & Truesdell 1991). The following summarizes other published 
DNS studies of particle dispersion. 

Riley & Patterson (1974) were the first to  present a computer simulation of ‘small’ 
particle autocorrelation and mean-square displacement in a numerically integrated, 
decaying isotropic flow field. A ‘small ’ particle was defined as that whose diameter 
and response time are less than the Kolmogorov lengthscales and timescales. The 
fluid Eulerian velocity field was obtained by direct numerical simulation of 
turbulence in a cubical volume (323 grid points), with an initial microscale Reynolds 
number R, = 23. The trajectories of 432 particles were obtained from the numerical 
solution of the equation of particle motion including only the Stokes drag. As 
expected, their simulation showed that in the absence of gravity, increasing the 
response time of the particle increased its velocity autocorrelation coefficient. The 
absence of the gravity term from the particle motion equation eliminates the effects 
of crossing trajectories (Yudine 1959), and thus increases the velocity autocorrelation 
coefficient as shown by Reeks (1977) and Wells & Stock (1983). 

Squires & Eaton (1991) studied particle dispersion in stationary (forced) and 
decaying isotropic turbulence using DNS. The simulation of decaying turbulence 
used 12€i3 grid points, and R, decayed from 43.2 to 17.5. They studied the dispersion 
statistics of six different (response time) particles, with each simulation tracking the 
trajectories of 4096 particles. 

McLaughlin (1989) computed particle trajectories in a numerically simulated 
vertical channel flow, with 16 x 64 x 65 grid points, to  study particle deposition on 
the wall. The equation of motion of the particle included the Stokes drag and 
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Saffman lift force, but not the gravity, virtual mass, and Basset history terms. It was 
found that although the magnitude of Saffman lift force was less than that of the 
component of Stokes drag normal to the wall, the impulse provided by the lift force 
had a significant effect on particle deposition within the viscous sublayer. The reason 
is that in this region the normal component of fluid velocity is relatively small. The 
Saffman lift force tends to  trap the particles within the viscous sublayer. 

The above review shows that in previous DNS studies of particle dispersion, 
comparison between DNS results and the experimental measurements of SL was not 
made. In addition, the dispersion statistics in our simulation are obtained from a 
larger number of realizations, 10648 ( =  223) particles, than in previous studies. 

It was planned a t  the beginning of this study to simulate the experiment of Wells 
& Stock (1983) in addition to that of SL. However, in the former, the particles were 
introduced into the wind tunnel upstream of the turbulence-generating grid, without 
providing information on the relative velocity of the particles downstream of the 
grid. This information is needed to start the computation of the particle trajectory 
in our simulation. SL, on the other hand, provided such information by stating that 
‘the particles were ejected a t  the wind tunnel centreline 20 mesh lengths from the 
grid with a mean velocity the same as the tunnel speed’. Of course, in DNS, the 
instantaneous, not the mean, values are needed for prescribing the initial conditions. 
Therefore the assumption of equal instantaneous velocity of particle and fluid at the 
particle injection position is adopted here. 

Sections 2, 3 and 4 describe the governing equations and the numerical method. 
Section 5 discusses the necessary scaling of timescales in our simulation in order to 
mimic the experimental conditions for particle dispersion and presents the properties 
of the solid particles. Section 6 discusses the results. The conclusions are presented 
in $7. 

2. Equation of particle motion 
The instantaneous velocity, wi, in the qdirection (figure l),  of each particle is 

obtained by time integration of the following Lagrangian equation of particle 
motion : 

viscous and pressure drag force 

force due to  fluid pressure gradient 
and viscous stresses 

+ !p,(Dui/Dt - dvi/dtp) inertia force of added mass 

+ 6a2(npp); rp d’d7(ui Tvi) d7 viscous force due to unsteady 
( t P  - 7 ) Z  

t p o  

relative acceleration (Basset) 

+ (mp--m,)gi buoyancy (or gravity) force. (1) 

Equation (1)  describes the balance of forces acting on the particle as it moves along 
its trajectory. The term on the left-hand side is the inertia force acting on the particle 
due t o  its acceleration. F is the inverse response time of the particle. The response 
time is the time for momentum transfer due to drag. F is calculated from: 
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FIGURE 1. Coordinates xi, fluid velocity components u$ and particle velocity components v,. 

and : 
a particle radius, 

C, 

- d 

drag coefficient, function of R,, 

derivative with respect to time following the moving particle, 
dt, 

3 total acceleration of the fluid as seen by the particle, 
Dt 

-- Dui - B + u j z ]  evaluated at the particle position xp, 
Dt 

gi gravitational acceleration in xi-direction, 

mr 
mp mass of the particle, 

R, 
ui 
vi 
,u dynamic viscosity of fluid, 
p fluid density) 

pp particle density, 
rP particle response time. 

mass of the fluid displaced by the particle) = m,(p/pp), 

Reynolds number of particle) = 2uplui - vil/,u, 
instantaneous velocity of the fluid at the particle location, 
instantaneous velocity of the particle in the xi-direction, 

Both ui and vi are measured with respect to a coordinate system that is moving with 
a constant mean stream velocity in the vertical (2,)-direction, i.e. opposite to that of 
the gravitational acceleration. This simple transformation removes the effects of 
mean advection and allows us to examine the influence of turbulent fluctuations on 
solid and fluid particle dispersion which is of main interest here. 

Equation (1) has a long history dating back to  Stokes (1851), followed by Basset 
(1888), Boussinesq (1903) and Oseen (1927). It has undergone extensive modifications 
starting with Tchen (1947), followed by Corrsin & Lumley (1956), Lumley (1957), 
Maxey & Riley (1983) and Auton (1983) among others. It is well known that (1) has 
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no exact solution, except for a trivial case, even in its simplest form in which all but 
the first term on the right-hand side vanishes. This is due to the nonlinearity 
originating from the need to evaluate the fluid velocity, u,, at the yet unknown 
particle position. The trivial case that has an exact solution is that  of an invariant 
and uniform fluid velocity, i.e. the flow cannot be turbulent. 

It should be notcd that if the particle Reynolds number R, is not small, permitting 
a Stokes approximation, no exact explicit equation of motion is known (Lumley 
1978). Of course the flow around the particle is determined by the Navier-Stokes 
equations, but the resulting drag is not a simple function of the relative velocity. 

Lumley (1978) examined the validity of the particle equation and showed that 
there are three requirements for it to  be used in a turbulent flow: 

(i) R, based on the fluctuating relative velocity should be less than 0.5. 
(ii) The flow in the vicinity of the particle should be at most homogeneous shear, 

which approximately means that d / r  < i, where d is the particle diameter and 11 is 
the Kolmogorov lengthscale, 7 = (u3/e) ; ,  where E is the dissipation rate of turbulence 
energy. 

(iii) For R, < 10, the wake can be considered stable; the flow around the particle 
can be assumed quasisteady, and the drag will be aligned with the relative velocity 
vector. It can be shown that these conditions approximately mean that d / r  < 4 or 

Of the above three requirements, (i) is the most restrictive. We have monitored the 
values of R, of all the particles during the simulation. The R, values for the heaviest 
particle (solid glass with 87 pm diameter used by Snyder & Lumley (1971)) remained 
always below 1.46, and for the lighter particles (corn with 87 pm diameter) remained 
always below 0.74. It should be mentioned that during the simulations the ratio d / r  
remained < 0.12, and 0.33 < 7 , / ~ ~  < 1.98 for all the particles used, where 7K is the 
Kolmogorov timescale, defined as T~ = ( v / E ) ~ .  

Although the magnitude of some of the forces on the right-hand side of (1) may be 
negligible compared to  the drag and gravity forces in the flow considered, we decided 
to  retain all the forces in the equation to examine their transient behaviour along the 
particle trajectory, as will be discussed later in $6.7. 

(d/r1)* -4 a,. 

3. Computation of particle trajectories 
The integration of ( l ) ,  via a second-order Adams-Bashforth scheme provides the 

new velocity, w , ( t ) ,  in the 2,-direction for each particle as a function of time. The new 
position, xp, , ( t , )  is calculated from: 

where t,-l is the time at the previous timestep, and At = t ,  - tn- l .  
The fluid velocity ~~[s,,~(t)] a t  the particle location (initially, the velocities of the 

coincident fluid and particle are assumed equal), which is needed to integrate ( 1 )  is 
obtained by a fourth-order accurate, two-dimensional, four-point Hermitian cubic 
polynomial interpolation scheme between the adjacent Eulerian fluid velocity 
values. This scheme is applied in the three coordinate directions at the particle 
location. 

We have compared the accuracy of this scheme with twelve others (Truesdell 1989) 
including linear interpolation, Lagrange with 36 points, midpoint with 21 points, 
midplane with 24 points and third-order Taylor-series with 13 points of Yeung & 
Pope (1988). It was concluded that the fourth-order accurate Hermitian scheme is 
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superior to the other schemes regarding the combination of accuracy and 
computational economy. Balachandar & Maxey (1989) used a fourth-order 
Hermitian scheme in two directions followed by a Fourier interpolation in the third 
direction. The accuracy of our scheme compares well with theirs. 

A number of solid particles is selected to compute the particle dispersion statistics. 
The number of particles should be large enough to obtain an ensemble average of the 
independent realizations of the random dispersion process. It can be shown from the 
central limit theorem that the relative error in performing the ensemble averaging 
varies as (M)-i, where M is the number of independent realizations. For M = 2000 the 
error is about 3 %, and for M = 14000 the error is about 1 %, i.e. the gain in accuracy 
diminishes as we increase the number of particles. In $$6.2 and 6.3 we compare 
the simulation results of g3, 163, Z3 and 323 particles and show that the results of 
2.2, ( = 10648) and 323 ( = 32 768) particles are virtually indistinguishable within the 
plotting accuracy. Thus for the results presented here we used B3 particles without 
much loss of accuracy. 

We start the computation of particle trajectories by uniformly distributing a 
number of particles, e.g. B3, within the computational box where there are, for 
example, 884736 possible locations in the 963 grid. The initial velocity of each 
particle is assumed equal to  the fluid velocity at the same location. We then integrate 
(1) in the three coordinate directions to obtain the subsequent particle velocity, and 
calculate the new position from (3). The magnitude of the timestep At is bounded on 
one hand by the available computer disk space and on the other by the resolution 
needed to compute accurate trajectories. This accuracy requires At to be much 
smaller than 7p, and consequently the three-dimensional velocity field of the fluid 
needs to be stored at intervals equal to  At, which is larger than the timestep used in 
integrating the Navier-Stokes equations for the fluid. The smaller At, the higher is 
the storage frequency and the larger is the disk space required. The results presented 
in this paper were obtained with At ranging between a third and a half T ~ .  The disk 
space required to store the three velocity components of the fluid a t  the 963 grid 
points was 10 megabytes per timestep, and a complete particle trajectory required 
one gegabyte of disk space. 

Tests were made by reducing At to a quarter of the value used here, and the 
resulting difference in the dispersion statistics was less than 1 %. 

4. Numerical simulation of grid-generated turbulence 
We solve the exact time-dependent, three-dimensional continuity and Navier- 

Stokes equations under periodic boundary conditions in a cubical domain with 
side length L ;  L = 1.  The domain moves with the constant mean stream velocity in 
the vertical positive x,-direction, thus the dependent variables of the four governing 
equations are the instantaneous fluctuations of the three velocity components, ui, 
and the pressure. The fluid is incompressible and has a constant kinematic viscosity, 

The equations are discretized in an Eulerian framework using a second-order 
finite-difference technique on a staggered grid containing N 3  points. N is an even 
number of points which are equispaced within the length L in each of three 
coordinate directions. The Adams-Bashforth scheme is used to  integrate the 
equations in time. Pressure is treated implicitly, and is obtained by solving the 
Poisson equation in finite-difference form using a fast Poisson solver. More details 
about the numerical method are discussed by Gerz, Schumann & Elghobashi (1989). 

V. 
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FIGURE 2. Time development of microscale Reynolds numbers RA for the simulation (DNS) and 
Snyder & Lumley’s experiment (SL), and integral scale Reynolds number R,. 

The initialization algorithm ensures, for a prescribed energy spectrum, that the 
initial random velocity field is isotropic, periodic in the three spatial directions, and 
divergence-free with respect to the discretized form of the continuity equation. It 
also ensures that the cross-correlation spectra, R,,(k), satisfy the realizability 
constraints (Schumann 1977). 

The energy spectrum E(k,  0) a t  dimensionless time T = 0 is prescribed by : 

E(k ,  0) = ( 3 ~ : ~ )  ( 1 / 2 ~ )  ( k / k i )  exp - k/k,l,  (4) 
where u$ is the dimensionless r.m.s. velocity (see table 1 for reference quantities), k 
is the wavenumber, and k, is the wavenumber of peak energy. All the wavenumbers 
appearing in (4) are normalized by the lowest non-zero wavenumber, kmin, which 
equals 27t since the size of the computational domain L = 1,  as mentioned above. The 
two inputs u: and k ,  are sufficient to specify E(k,O).  The dimensionless kinematic 
viscosity v is calculated for a prescribed initial microscale Reynolds number, 
RA0 = A,u,*/v, by solving the two equations defining A, and the energy dissipation 
rate eo: 

A, = [15u,*2u/s0]~, (5) 

6, = 2 u  k2E(k, 0) dk. (6) s 
The values of the dimensionless parameters at (T = 0) used in the present simulation 
are: RAo = 25 (figure 2 ) ,  (kp/kmin) = 6, u: = 0.0504 (figure 5), A, = 0.0238 (figure 7) ,  
v = 4.88 x lop5. The values of the reference length and timescales used in normalizing 
these quantities are listed a t  the end of table 1. The number of grid points is 963. 

It should be emphasized that the spectrum (4) is appropriate for the initial period 
of decay (Schumann & Patterson 1978) during which R, remains nearly constant 
(Batchelor 1953) and the time exponent of energy decay is approximately equal to 
- 1. 

The spectrum introduced by Kraichnan (1970) 

E ( k )  = 1 6 ( 2 / 7 ~ ) f u , * ~ ( k ~ / k 3  exp [ -2(k /k , )2] ,  (7) 
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FIGURE 3. Time development of the skewness of the fluid velocity derivatives. 

and used by Riley & Patterson (1974) and Balachandar & Maxey (1989) results in a 
much faster decay of R, with time than in the experiment (Schumann & Patterson 
1978). The spectrum developed by Pao (1965) and used by Yeung & Pope (1988) 
namely 

E( k) = L-; exp [ - 1.5a( ky ):I, 
where a is a constant, mimics the inertial subrange for k < ( l / y )  and the universal 
range for k 9 ( l / q ) .  Of course, the true inertial subrange behaviour, with significant 
separation between the dissipative and energy-containing wavenumbers, can only be 
possible a t  much higher values of R, than those achieved in direct numerical 
simulations a t  present, and thus the spectrum (8) is not suitable for our flow. 

The spectrum used in our simulation, equation (4), results in an energy decay rate 
proportional to t-' which is expected for the initial period of decay. Since solid 
particle dispersion depends on the decay rate of turbulent kinetic energy, i t  was 
necessary to simulate SL's rate of energy decay. The virtual origins they used to 
obtain a decay rate proportional to (x/M)-' were 16.0 and 12.0 for the vertical and 
lateral velocity components respectively. In our simulation, a virtual origin of a 
dimensionlcss time 1' = 0.36 was nccessary to achieve a decay rate proportional to 
t-l. With a virtual origin of T = 0, the decay exponent equals - 1.07. Figure 2 shows 
the time development of R, in which 18 2 R, 2 15.9 for the interval 2.0 < T < 7.2 
whereas R, in the experiment of SL remains nearly constant a t  an average value of 
48.5 within the test section. The significance of this time interval will become clear 
below. 

It should be emphasized that the dimensionless time T is measured from the start 
of the simulation of fluid turbulence. 

Figure 3 displays the temporal variation of the skewness of the velocity derivative, 
defined as 

and is a measure of the average rate of production of enstrophy by vortex stretching 
or the rate of nonlinear energy transfer from the low to high wavenumbers. Earlier 
measurements by Batchelor & Townsend (Batchelor 1953) show that S, varies 
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betwcen 0.48 and 0.33 for R, values between 20 and 60 respectively. Recent 
measurements by Mohamed & LaRue (1990) indicate the same dependence of S, on 
R,. Figure 3 shows that S, reaches a value of 0.4 a t  T = 1.0, indicating that fully 
developed turbulence was established a t  that  time and then remains nearly constant. 
An additional critcrion was used to determine the time a t  which the turbulent field 
was fully developed. It requires that the decay exponent, n, and the virtual origin, 
x,,, used in the powcr-law expression ( u 2 ) / U 2  = A ( x / M - x , / M ) n ,  should not depend 
on the starting position (or time) of the decay data (Mohamed & LaRue 1990). Using 
this criterion, it was determined that the turbulence was fully developed for T 2 2.0, 
and thus the solid particles are injected a t  T = 2. The time development of S ,  in 
isotropic turbulence computed by the spectral method of Orszag & Patterson (1972) 
and Schumann & Patterson (1978) is very similar to that in figure 3. 

The portion of the simulation that was used for comparing the dispersion statistics 
from DNS with those from SL's experiment was 2.67 < T < 7.2.  The interval 
2.67 < T < 15.0 was used for the zero-gravity simulations of particle dispersion. 

The anisotropy tensor of the large-scale motion is defined as: 

where q2 = ( u i  u i )  is twice the kinetic energy of turbulence. Figure 4 shows the time 
development of Bi,. For thc interval 2.67 < T < 7.2 ,  the maximum value of B,, is less 
than 1 YO in any coordinate direction. This is lower than the value, 7.4Y0,  observed 
in SI,. 

We also examined the temporal variation of Dii which indicates the amount of 
anisotropy present in the small-scale turbulence, and is defined as:  

where e = 2v(ui , ,u , , , )  is the dissipation rate of turbulence kinetic energy. For the 
interval 2.67 < T Q 7.2 the maximum value of Dii is less than 1 % in any coordinate 
direction and over the total simulation i t  is less than 2%. 
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FIGURE 5. Time development of the root-mean-square fluid velocity. ((u;)); ((u:));, ((u,")); or 
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FIGURE 6. Spatial resolution of the Kolmogorov scale: time development of yk,,,. 

The behaviour of Bii described above can be seen also in figure 5 which shows the 
temporal variation of the three components of the r.m.s. velocity. For the interval 
2.67 < T < 7.2 the flow is highly isotropic. At the end of the simulation the u ~ , ~ ~ ~  is 
slightly greater than the u ~ , ~ ~ ~  or u~,~ , , ,~ .  

The ability of the simulation to resolve the motion at the smallest turbulence 
scales is measured by the dimensionless quantity yk,,,, where k,,, is the highest 
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resolved wavenumber (=  Sn(1fl)). The numerical simulations of Yeung & Pope 
(1988) indicate that the smallest scales are captured if yk,,, 2 1. In our simulations 
1.15 < qkmax < 2.1 for 2.0 < T < 7.2 and increases to 3.08 at T = 15.0 as displayed 
in figure 6. 

The time development of the non-dimensional integral-, Taylor-, and Kolmogorov- 
lengthscales is shown in figure 7. These scales are calculated directly from the three- 
dimensional spectra of the energy E(k ,  t )  and dissipation ~ ( k ,  t ) .  The figure shows that 
the ratio (Z/q) of the largest to smallest lengthscales is in the range 20 > Z/r > 17.4 
for 2.0 < T 5 7.2. During this period R, decays from 44 to 33 (figure 2), resulting in 
(Z/r) z 1.m; as expected. 

5. Particle properties and scaling 
The particles selected for the present study are three (corn pollen, solid glass and 

copper) of the four used by Snyder & Lumley (1971) since one of our objectives was 
to reproduce numerically the dispersion statistics measured by SL. The hollow glass 
particle was not included in our study because of a reported considerable error in its 
experimental data. SL stated that ' as much as 40 YO of the energy of the hollow glass 
beads could have been lost due to the low sampling rate '. 

Now, the Reynolds number, R,, in our simulation is lower than in the experiment 
of SL as shown in figure 2. The figure shows that R, = 18 at the dimensionless time 
T = 2 when the skewness of the velocity derivative reaches 0.43. In the experiment 
of SL, R, remains at  a value of about 48.5 throughout the test section, where ours 
decays to 15.9. In the experiment, the r.m.s. velocity decay rate nearly equals the 
growth rate of the Taylor microscale, A,  whereas in our simulation, because of the 
lower R,, the Taylor microscale grows at a slower rate than that of the r.m.s. velocity 
decay. Thus the effect of the local fluid acceleration on a particle in the simulation 
will be different from that on an identical particle in the experiment. Therefore it is 
necessary to ensure that the ratio ( T ~ , ~ / T ~ , ~ )  has the same value in the simulation and 
experiment, where T ~ , ~  is the turbulence timescale or eddy turnover time T ~ , ~  = lo/uo 
a t  the time of starting the dispersion statistics. And since gravity provides the only 
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external force in ( I ) ,  i.e. it is independent of the turbulence properties, we must scale 
the gravitational acceleration in the simulation so that its effect relative to that of 
fluid acceleration be the same as in the experiment. 

Accordingly, i t  is necessary to satisfy for each of the three particles studied in our 
simulation, the following two scaling conditions at the location (or time) of the first 
experimental station x / M  = 68.4 : 

[~p,o/~f.oll)ss = [7p/7f+OIExPT? (12) 

[7g. 0/7~.01L)NS = [7g/7f,01E~PT. (13) 

where 7g, , = d/v,, , is the ‘ drift timescale ’ and ?it, , = g*7p, , is thc initial drift velocity. 
The gravitational acceleration in the simulation, g*, is calculated from (13). The 
subscript 0 denotes the dimensionless time T = 2.67 at which we start calculating the 
dispersion statistics as will be discussed in detail in 56.1. The drift timescale 7g is the 
time spent by the particle to drift, due to gravity, a distance equal to its diameter. 
The ratio between 7g and the eddy turnover time 7f signifies the effect of crossing 
trajectories as will be discussed later in $6.2. Two particles with different drift 
timescales, rgl and 7g2, existing initially at the same point in a turbulent eddy will 
cross the boundary of that  eddy to another, under gravity effect, at different times. 
The value of g* obtained from (13) is ncarly the same for the three particles studied 
(the maximum difference is about 5%),  and thus the average of the three values was 
used in all simulations. 

It is important here to discuss why scaling of the drift timescale should be made 
with respect t o  the eddy turnover time, i.e. thc timescale of the large-scale motion 
and not that  of the Kolmogorov scale. Of coursc, the fact that  the particle diameter 
is smaller than rj may intuitively suggest that  scaling should be with respect to the 
latter. However, 7p is of the same order of 7K, and the ratio ~ , / 7 ~  exceeds 1 in the 
experiment and our simulation (table 1 ), especially during the important initial 
period of dispersion. On the other hand, the ratio 7p/7r is always less than 1 
throughout the simulation and in the experiment. In other words, deformation of 
large eddies (e.g. stretching and bending) occurs at frequencies small enough for the 
particles to respond to, and displace with, much more readily than they do with the 
higher frequencies of the small-scale motion. This bchaviour is evident in figure 13 
showing the Lagrangian velocity frequency spectra of thc particles and surrounding 
fluid, as will be discussed in 56.6. Thus, a large eddy ‘carries’ the small particles 
along, unless their 7p is large enough that gravity pulls them out of that  eddy to 
‘cross’ into a neighbouring cddy. The strong dependence of particle dispersion on the 
large-scale motion is also confirmed by the studies of Reeks (1977), Lumley (1978), 
Crowe, Chung & Trout (1988) and Squires & Eaton (1991). Thus, fluid motion at the 
Kolmogorov scale has negligible effect on particle displacement, and should not bc 
used for scaling the acceleration. 

The lengthscale, I,, used in calculating 7f, , is obtained from the three-dimensional 
energy spectrum according to : 

The three-dimensional energy spectrum E(lc,t) is calculated at any time t by the 
integration of the Fourier transform of the trace of the velocity correlation tensor 
over a spherical shell of radius k which is the magnitude of the wavenumber vector 
k. 
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Corn pollen Solid glass Copper 

Diameter (pm) (4 87 87 46.5 
Density ratio (PPlPf) 1000 2500 8900 
Initial 7, (s) (SL) 0.020 0.045 0.049 
Initial 7, (s) (DNS) ( T ~ . O ) ~  0.027 0.061 0.067 
Ratio of initial timescales 

(DNS) and (SL,x/M = 68.4) ( T ~ / T ~ , , )  0.090 0.203 0.221 
(DNS) and (SL,x/M = 68.4) 2.0 x 10-3 8.9 x 10-4 4.4 x 10-4 

(DNS) (l-t.o/uo) 3.16 6.69 7.57 
Ratio of initial velocities 

Ratio ( T , , / T ~ )  (min, max) 
(DNS) ( 7 p / 7 K )  0.33, 0.81 0.74, 1.82 0.81, 1.98 
(SL) ( 7 , / 7 K )  0.66, 1.88 1.49, 4.23 1.63, 4.62 

(DNS) (d l r l )  0.077, 0.121 0.073, 0.115 0.040, 0.063 
(SL) (d l r l )  0.126, 0.212 0.126, 0.212 0.067, 0.113 

Maximum Reynolds number (Rpy 0.735 1.46 0.936 

a ‘Initial ’ or subscript ‘0’ denotes time at T = 2.67, where T is non-dimensional time: T = real 
time/reference time, where: Reference length = 0.1859 m, Reference velocity = 1.741 m/s, 
resulting in Reference time = 0.106 78 s, and Reference kinematic viscosity = 0.323 65 m2/s. 

Lengthscale ratio (min, max) 

T ~ , ,  = d/v,,,, T ~ , ,  = lo/uo = 2.825 (or 0.302 s ) ,  1, = 0.0755 and uo = 0.0267. 
R, = dlu,-v,l/v observed for all particle trajectories. 

TABLE 1.  Particle properties and flow parameters 

Table 1 lists the values of the significant particle and fluid properties in both the 
simulation and experiment a t  T = 2.67. It should be noted that in DNS, the 
instantaneous value of T~ is not a constant, instead i t  is calculated from (2) 
throughout the simulation. 

6. Results 
In this section we present the results of the numerical simulations and, whenever 

possible, compare them with the experimental data of SL. The dispersion statistics 
are presented for the solid particles, their surrounding fluid and their corresponding 
fluid points. 

AJluid point is defined as the fluid particle that coincides with the centre of the 
solid particle at  the injection time, tinj. Therefore a fluid point is uniquely defined by 
the initial position of the corresponding solid particle, and its identity is preserved 
throughout its unsteady motion. 

The surrounding Jluid,  on the other hand, is the local ‘host ’ fluid that exists around 
the solid particle at each position along its trajectory, and thus the identity of the 
surrounding fluid varies as many times as the number of spatial positions visited by 
the solid particle. 

We discuss in the following subsections how and why the dispersion statistics of a 
solid particle differ from those of its corresponding fluid point and surrounding fluid. 
The statistics include the mean-square relative velocity, velocity autocorrelations, 
mean-square displacement, turbulent diffusivity and Lagrangian velocity frequency 
spectrum. Comparison is also made between the developments of these statistics in 
gravity and zero-gravity environment. We also present the time development of all 
the instantaneous forces acting on one solid particle as it moves along its trajectory. 

22 FLM 242 
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FIGURE 8. (a) Mean-square relative velocity of the particles in the lateral direction (z). A, corn; B, 
solid glass ; C, copper ; -, in gravity ; --, zero gravity. ( b )  Mean-square relative velocity of the 
particles in gravity, in the gravity direction (2). A, corn; B, solid glass; C, copper. (c) Mean-square 
relative velocity of the particles in zero gravity, in the gravity direction ( z ) .  A, corn; B, solid glass; 
C, copper. 

6.1. Mean-square relative velocity 
The mean-square relative velocity in the x,-direction is a measure of the deviation of 
the particle velocity fluctuation from that of the surrounding fluid, and is defined as : 

where r is the injection position of the solid particle, and x is its current position, i.e. 
xinj = x(r , t in j ) .  As was mentioned in $4, the particles are injected at dimensionless 
time T = 2 which equals tinj. 

is used to determine the time a t  which the 
particles become independent of their injection conditions. Riley & Patterson (1974) 
were the first to use the time of occurrence of the peak of <vf, rel) to indicate the time 
a t  which the particles had adjusted to the decaying turbulence. 

Figure 8 ( a )  shows the time development of ( w ; , ~ ~ ~ )  for the three particles (A:  corn, 
B:  glass, C :  copper) under gravity and zero-gravity conditions. It should be noted 
that the time axis t in figure 8 is dimensionless and is measured from t in j ,  and thus 
t = 0 in these figures correspond to T = 2.  Throughout the remainder of the paper 
the time origin, to ,  of all the statistical quantities of a particle is the time of the peak 

The development of ( v & . , )  (not shown) is nearly identical to that of ( w ; , ~ ~ ~ )  as 
expected in an isotropic flow. At zero time, ( v ; , ~ ~ ~ )  is zero according to the imposed 
initial condition of equal velocity of fluid and particle a t  injection. It is seen that 
particles with larger rP, hence higher inertia, have higher relative velocity in both 

The temporal behaviour of 

of its <Vt,rel>r or tpeak. 

92.1 
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( t p e a k l T P , o )  (tpeakITp.0) 

Particle T p , o / ~ f , o  gravity zero-gravity (tpeah/tv,, ,,,) 

Corn 0.09 2.61 1.96 0.40 
Glass 0.203 1.16 1.45 0.24 
Copper 0.221 1.07 1.33 0.14 

TABLE 2. Time required by the particle to reach the peak of 

conditions of gravity and zero gravity, owing to  the smaller rate of decay of their 
kinetic energy compared to that of their surrounding fluid turbulence. However, if 
tpeak is normalized by T ~ , ~ ,  we see in table 2 that  the lighter the particle, the larger 

It is interesting to note that the values of ( v : , ~ ~ ~ )  for the three particles in zero 
gravity become vanishingly small a t  t = 5.5, whereas they remain much higher for 
the particles in gravity. As will be discussed in the following sections, smaller values 
of ( v ; , ~ ~ ] )  at large times correspond to higher velocity autocorrelations and higher 
turbulent diffusivity. On the other hand, gravity reduces particle velocity in the 
lateral directions, resulting in higher relative velocity between the particles and their 
surrounding fluid. 

The time tpeak is also sensitive to the effects of inertia and gravity. In  zero gravity, 
particles with higher 7p need longer time to ‘lose memory ’ of their initial velocity, 
hence their larger tpeak in figure 8 ( a ) .  Gravity reduces particle velocity in the lateral 
directions, but in order to determine whether tpeak is reduced or increased we need to 
know the time t,t,max at  which the terminal velocity, vt ,  attains its maximum value. 
This can be seen in figure 8 ( b )  which shows the time development of ( v ; , ~ ~ ~ )  in the 
gravity direction ( z ) ,  and clearly distinguishes the particle behaviour in that 
direction from that in the two lateral directions. It is clear that ( v ; , ~ ~ ~ )  increases 
until the particle reaches a steady free-fall velocity and then remains invariant. 
Having higher rP, the glass and copper particles have a larger tut,mar than the corn 
particle. Therefore, the effect of the initial inertia of the corn particle is damped by 
gravity earlier than the heavier particles. This damping delays the occurrence of its 
relative velocity peak, hence an increased tpeak in gravity. On the other hand, tpeak of 
the heavier particles is reduced in gravity because their t,t.max is much higher than 
their tpeak as shown in table 2. During this initial period, a heavy particle is more 
influenced by its inertia than by gravity (Yudine 1959) as will be discussed later. 

behaves in a very similar manner to 
that of ( v ; , ~ ~ ~ )  and ( v ; , ~ ~ ~ ) .  The effect of continuity and crossing trajectories is 
evidenced by comparing the zero-gravity distributions (dashed curves) of (v: ,~, , )  
(figure 8a) with their counterparts in the gravity case (solid curves). The maximum 
values of the three zero gravity curves are about 0.24-0.29 of the corresponding 
values in the gravity case. This means that continuity and crossing trajectories 
effects arc the source of 76Y0 of ( v : , ~ ~ ~ )  for the copper particle, and 71 % for the corn 
particle. In  other words, for the particles studied here for which (v t /u i )  > 1, and for 
long dispersion times, it is gravity, not inertia, that contributes most to the velocity 
difference between the particles and surrounding fluid. This is true in the lateral 
directions as well as in the gravity direction, though the gravity effect is more 
pronounced in the latter as expectcd (figure 8 b, c). 

is (tpeak/Tp,O). 

In  zero-gravity, figure 8 ( c )  shows that 
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FIGURE 9. (a )  Lagrangian velocity autocorrelations of the particles and their surrounding fluid in 
the lateral direction (5). ( b )  Lagrangian velocity autocorrelations of the particles and their 
surrounding fluid in the gravity direction (2). A, corn; B, solid glass; C, copper; FP, fluid point; 
-, particles in gravity or zero gravity ; surrounding fluid for particles in zero gravity ; 

, surrounding fluid for particles in gravity. (c) Lagrangian velocity autocorrelations of the 
copper particle in the lateral direction (5) in gravity. A, Ei3 particles; B, 163 particles; C, B3 
particles ; D, 323 particles. ( d )  Comparison between the Lagrangian velocity autocorrelation Rbf, 1 ,  

(equation (22)), of the surrounding fluid of the copper particle in the lateral direction ( r )  (dashed 
line) and the instantaneous Eulerian spatial velocity correlation RE. 1( --7vt, T ) ,  (equation (23)), 
(solid line). (e)  Comparison between RE, l(r), the one-point Eulerian fluid velocity correlation (E), 
and R L f p , l ( ~ ) ,  the Lagrangian autocorrelation of a fluid point (FP). 

7 

6.2. Lagrangian velocity autocorrelation 
The Lagrangian autocorrelation coefficient, RLp, a ( t ) ,  of the particle velocity is defined 
as 1 

with no summation on i ,  i = 1,2,3, and to is the time at which we start computing the 
Lagrangian statistics (tpeak in table 2 ) .  Now if the turbulence is non-stationary, as in 
the decaying turbulence considered here, then the value of RLP,( depends on the 
choice of to. SL used a time-coordinate stretching to transform the decaying field into 
a nearly stationary one. In the initial period of decay the energy E - x-l, u - x-t, 
and 1 -xi, and thus t - x. SL divided the observed velocity fluctuations of 
the particle by the r.m.s. velocity of the particle a t  a selected measuring station 
(x /M = 73), and compensated for the increasing lengthscale, 1, by dividing the 
separation distances by the distance from that reference station to  the virtual origin. 
However, this decay correction implies the unjustified assumption that the particle 
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Particle TL, ,/7,dDNW TL. J7,. o(DNS) TL. y/7r ,o(DW 
Corn 3.814 0.344 0.351 
Glass 1.741 0.354 0.365 
Copper 1.721 0.381 0.396 

TABLE 3. Particle Lagrangian integral timescale 

velocity fluctuations decay at  a rate equal to  that of fluid turbulence. Here, the 
velocity autocorrelations are presented without scale stretching. As discussed in the 
preceding section, the starting time, t o ,  in (16), is selected to coincide with tpeak. This 
method requires that two computer runs be performed for each of the three particles 
studied. The first run calculates the velocity and trajectory of a particle, its 
corresponding fluid point and surrounding fluid, and determines tpeak. The second run 
calculates the Lagrangian statistics starting from tpeak. 

The autocorrelation coefficients for the solid particles and their surrounding fluid 
are shown in figure 9 (a,  b) .  In  addition, the zero-gravity autocorrelations for the corn 
particle, its surrounding fluid, and its corresponding fluid point are shown (the three 
curves with highest magnitudes in figure 9a,  b )  for comparison. 

The velocity autocorrelation coefficient for the fluid point is defined as : 

The velocity autocorrelation coefficient for the fluid surrounding the particle is : 

The crossing trajectories effects are readily seen for the corn particle by comparing 
its autocorrelations with and without gravity. In the gravity case, as the particle falls 
from its original location within a highly correlated velocity region and passes 
through various neighbouring vortical structures its memory of the original velocity 
decays much faster than in the zero-gravity case. 

Now we compare the velocity autocorrelations of the three particles in the gravity 
case. It is seen that in the initial period where the effects of particle inertia dominate 
(see figure 8 b ) ,  that RLg,l of the heaviest particle (C) is higher than that of (A) for 
T < 1.95 (see table 1 for the value of the reference time used in normalizing 7). 
Similarly, RL,,, of the glass particle (B) is higher than that of (A) for 7 d 1.5. For 
larger values of 7 ,  the effects of gravity dominate, causing R,,,, of the heavier 
particles to  decay faster, vanish and become negative a t  earlier times than that of the 
lighter particle. The negative part of R,,,, will be discussed later. A rough measure 
of the time interval over which vi(t) is correlated with itself is the Lagrangian integral 
timescale, defined as 

(19) 

Table 3 shows the computed Lagrangian integral timescales, normalized by 7f, ,,, for 
the two lateral directions. We see that the Lagrangian timescale is highest for the 
particle with highest 7, (copper) and smallest for the corn particle. I n  other words the 

TL, i = J o m ~ L p ,  i(t) dt. 
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effects of inertia in the initial period (figure 9 a )  contribute more to the integral in (19) 
than the effects of gravity. It should bc noted that the maximum lag time, r = 4.5, 
used in (16) to compute RLp,i(7) equals respectively 4.6, 4.5, and 4.2 times the 
Lagrangian integral timescale, TL,x, for the corn, glass, and copper particles. TL+ in 
turn, ranges from about 3.8 to 1.7 times rp,o of these particles (table 3). This indicates 
that  sufficient time has elapsed for the particles to lose the 'memory' of their 
conditions at time to ,  and dispersion then is classified as 'long-time dispersion '. Thus, 
continuing the computation beyond this time would not provide additional statistical 
information of interest. 

It should be mentioned that RLp,l (figure 9a) starts to deviate from RL,,, (not 
shown) after both decay t o  zero. The former assumes larger negative values than the 
latter, i.e. RLp, displays a much larger 'negative loop' than RLp,2 does. The negative 
loops are due to the continuity effect discussed below, and the difference in their size 
is due only to the increased anisotropy of the carrier fluid (figure 4) as a result of 
turbulence decay and increased length scales. Figure 4 shows that Bll is positive 
during this period, whereas B,, is smaller and negative, i.e. (u;)  > (ui). 

Csanady (1963) examined the conditions under which negative loops occur in the 
particle Lagrangian autocorrelations. He postulated that if the terminal velocity is 
sufficiently high then there must exist negative portions of the Lagrangian lateral 
autocorrelations because continuity requires that the space-time correlations 
or delayed-time Eulerian correlations, RE, satisfy the following relationships 
(Townsend 1976) 

Jym 'E, 2 dxl dx3 = o, 

Jym J:m 'E, 1 dx2 dx3 = O' 

(20) 

(21) 

Accordingly, Csanady labelled the occurrence of the negative loops as ' continuity 
effect' which is a consequence of the 'crossing trajectories effect'. And both effects 
reduce the dispersion of solid particles in the directions normal to that of gravity. 

Csanady (1963) also explained the similarity between RLsf, and RE, as follows. 
When a particle with high terminal velocity crosses an eddy, in the x3- or gravity- 
direction, the lateral turbulent dispersion can be neglected as compared to  the 
distance travelled, i.e. (xi,1); 4 17vJ. Thus during the fall time 7 we have 

Now for a particle with a high terminal velocity, the fall time 7 may be neglected 
compared to  the eddy turnover time (see (13)), or equivalently the change in the eddy 
size during the time 7 can be neglected compared to the spatial change of RE,l.  Thus 
REV becomes the instantaneous spatial velocity correlation at two points separated 
by the vertical distance 7vt, and thus RLsfVl approaches RE,1.  Figure 9(d) compares 
RLsf, 1(7)  of the copper particle with the instantaneous Eulerian spatial correlations 
of the fluid velocity R E s I (  -7vt, 7 ) .  The figure shows that the two correlations are 
quite similar but not identical. This is expected, since the copper particle is not 
falling in an exactly vertical direction (see figure ~ O C ,  d), and thus RLSf,, should be 
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slightly higher than REV1 for the initial period 7 < 2.4. A much heavier particle would 
be needed for the two correlations to be identical. Csanady showed that this 
similarity is valid if lvtl 2 4(ug)i. This condition is satisfied for the glass and copper 
particles but not for the corn particle, hence the negative loops in R,,,, of the glass 
and copper particles. More supporting evidence is presented later in $6.3. 

Also shown in figure 9 ( a )  are the velocity autocorrelations of the surrounding fluid, 
RLslv1(7), for each of the three particles in the gravity case. As expected, these 
autocorrelations decay much faster than those of the corresponding solid particles. 
A solid particle retains, to some extent, information of its velocity a t  earlier times. 
The ‘host fluid’ surrounding the particle a t  time t ,  on the other hand, has little 
information about the velocity of the earlier host fluid at  time ( t - 7 ) ,  and this little 
information diminishes further as the particle migrates to yet another host, 
especially in a decaying turbulence. 

It is interesting to note that owing to the inertia of the corn particle, its R,,,, in 
zero-gravity is higher than that of the corresponding fluid point. The same is true for 
the other two particles (not shown). More interesting is that RLsfsl of the fluid 
surrounding the corn particle in zero-gravity is higher than that of the particle itself 
for T > 2, i.e. a behaviour opposite to  that in gravity environment. In  the absence of 
gravity the solid particle stays longer in an eddy before i t  crosses it to another, and 
the fluid velocity in an eddy is more correlated with itself than the particle velocity 
is. In  the initial period, 7 < 2, where the particle inertia dominates the reverse 
behaviour is seen. 

Figure 9 ( 6 )  shows RLp, , for the three particles with gravity (the three curves with 
highest magnitudes) and their surrounding fluid, IZLsf, (the three curves with lowest 
magnitudes). Also shown is R,,,, for the corn particle in zero gravity, its 
corresponding fluid point, and its surrounding fluid. Again the behaviour of the 
autocorrelations in the gravity direction, as expected, is significantly different 
from that in the two lateral directions. The nearly invariant terminal velocity, 
vt (see figure 8 b ) ,  during most of the period of calculating RLP,3, and the fact that 
(v,/u,) > 1 result in the depicted asymptotic behaviour of RLP,, .  Once gravity is 
eliminated, then RL,, , duplicates the developments of RL,, and RL,, as shown for 
the corn particle and its surrounding fluid. Of course R,,,,, of thc fluid point is 
independent of gravity and is nearly identical to its counterparts in the lateral 
directions. 

It was mentioned earlier in $3  that we used 223 particles for our simulation based 
on a comparison between the results of 8,, 163, 223 and 323 particles. Figure 9(c) 
shows this comparison for R,,,,(7) of the copper particle using 8,, 16,, 223 and 32, 
particles, denoted respectively by A ,  B. C and D. It is seen that curves C and D nearly 
coincide throughout the computation period, whereas that corresponding to the 
smallest number of particles ( A )  deviates from them. Based on this comparison and 
a similar one in the next section we decided that the statistics obtained from 22, 
particles are sufficiently accurate. 

Finally, a comparison between the one-point Eulerian fluid velocity correlation 
RE,  1(7) and the Lagrangian autocorrelation of a fluid point RLfp, 1 ( ~ )  is shown in figure 
9 (e).  The one-point Eulerian correlation is defined as : 

The figure shows that the present results are qualitatively similar to those of Riley 
& Patterson (1974). For small values of 7 (7 < 1.5, i.e. ( 7 / ~ ~ , ~ )  d 0.5), we see that 
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FIGURE 10. (a )  Normalized mean-square displacement in the lateral direction (2). FP, fluid point; 
A, corn ; B, solid glass ; C, copper ; -, in gravity ; --, zero gravity. Snyder & Lumley : 0,  corn ; 
0, solid glass; A,  copper. ( b )  Normalized mean-square displacement in the gravity direction (2). 

(c) Trajectories of eight particles in gravity and eight fluid points projected onto a vertical (y, 2)- 
plane. ( d )  Trajectories of eight particles in gravity and eight fluid points projected onto a vertical 
(z,z)-plane. ( e )  Trajectories of eight particles in gravity and eight fluid points projected onto a 
horizontal (r, y)-plane. (f) Comparison of the normalized mean-square displacement in the lateral 
direction (2) with Taylor’s theory for short time (line of slope 2) and long time (line of slope 1) 
dispersion. (9) Normalized mean-square displacement in gravity of the copper particle in the lateral 
direction (2). A, 83 particles; B, 163 particles; C, 2 P  particles; D, 323 particles. 

R,,,, 1(7) is slightly larger than RE,  1(7), and that this trend is reversed for larger 7.  The 
recent study of Kaneda & Gotoh (1991) for decaying isotropic turbulence supports 
our results for small 7 .  However, our results show that the differences between 
RLfp,1(7) and R,, , (7)  are small relative to the magnitude of either correlation. This 
supports the assumption that R,,,, 1(7) x RE, 1(7) in nearly isotropic turbulence. 
Shlien & Corrsin (1974), though their experiment showed larger difference between 
the two correlations for small 7 ,  indicated that it is possible that RLfp,l(7) > RE,1(7) 
for large 7.  

6.3. Mean- square displacement 

The mean-square displacement (dispersion) of a solid or fluid particle in the xi- 
direction is calculated from : 
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where N is the total number of particles and to equals tpeak, the time a t  which <vI’, rel) 

peaks. 
Since the turbulence energy and lengthscales in the simulation differ from those in 

the experiment of SL, as mentioned in $ 5 ,  the mean square displacement, ( x ; , J t ) ) ,  
of the particles must be appropriately normalized before comparing the DNS results 
with those of SL. Here we normalize ( x i , J t ) )  by l;, where I ,  is the integral lengthscale 

Figure 10 (a)  compares the numerical and experimental time development of 
( ~ i , ~ ( t ) )  for the three particles. As expected, the lighter particle, with smaller T ~ ,  

disperses laterally more than the heavier particles. The agreement between the 
computed and experimental values is good for the corn particle throughout the entire 
range of SL’s data. However, the simulation of the glass and copper particles 
overestimates (xi, l ( t ) )  in the initial period, while the agreement improves as the 
long-time dispersion regime is approached. There are two possible reasons for the 
overestimation during the initial period. First, there is uncertainty about matching 
the starting time to of computing (xi,l(t)) in the simulation with that of the 
experiment, even though the decay rates of turbulence energy in both are in very 
good agreement. As was mentioned in $6.1, we assume that the starting time 
coincides with that of the peak of ( ~ : , ~ ~ ~ ( t ) )  (figure 8a) ,  but the experiment of SL did 
not provide information about the time development of ( ~ ~ , , , ~ ( t ) ) .  Secondly, we 
normalize ( x i , l ( t ) )  by the square of the integral lengthscale E, at the time of that 
peak. Therefore, one or both of these factors would lead to the disagreement in figure 
10 (a) .  The simulation and experiment both indicate that the mean-square 
displacement of the glass particle is higher than that of the copper particle. However, 
the difference between the ( x i , l ( t ) )  curves of the two particles is slightly higher in the 
simulation than in the experiment. 

Also shown in figure 10 (a)  is the time development of (xi, 1) of a corn particle in 
zero gravity and of the corresponding fluid point. The effect of gravity in reducing 
particle dispersion in the lateral directions is evident in the figure. For example, a t  
time t = 0.4 s x 3.85TL,., we see that (xi,1) of the corn particle is only 40% of its 
zero-gravity value. It is also seen that in zero-gravity, the corn particle disperses in 
the lateral directions slightly more than the corresponding fluid point. This is in 
accordance with the behaviour of their respective autocorrelations which was 
explained in $6.2. 

The time development of (xi,,) of the three particles is shown in figure 10(b) 
together with that of the corn particle in zero gravity and its corresponding fluid 
point. As expected, we see that the magnitudes of ( x i , 3 )  for the three particles are 
now in reverse order to that in the lateral directions, i.e. (xi,,) is highest for the 
copper particle, followed by the glass particle and is lowest for the corn particle. This 
behaviour agrees with that of RLp,, in figure 9(b) and that of (v:,,,,) in figure 8 (b). 

It should be noted that the (xi,3(t)) curves of the three solid particles continue to 
be parabolic even after long dispersion times, i.e. they follow a t2  behaviour in 
contrast to that of (figure 10a). This is due to the effect of terminal velocity, 
vt, which acts as an imposed, nearly constant, mean velocity with a magnitude higher 
than that of Consequently, R,,., attains a nearly constant value close to unity 
(figure 9b) as explained earlier in $6.2. Now following Taylor’s (1921) approach, it is 
easy to show that ( x i , , ( t ) )  - t 2 .  Further evidence will be presented in $6.4. 

It should be stressed here that the large magnitudes of ( ~ i , ~ ( t ) )  relative to those 
of ( x i , * ( t ) )  are a direct result of the large relative magnitudes of the instantaneous 
velocity of the particle in the x,-direction. This velocity component, v,, in turn 

(see (14))  at tpeak. 
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consists of a mean drift velocity and a small fluctuating turbulent velocity, the 
former being an order of magnitude larger than the latter (figure 8 b ,  c). Thus, in a 
gravity environment only the mean-square displacements in the lateral directions, 
( x i , l ( t ) )  and ( x i , 2 ( t ) ) ,  represent a true measure of turbulent dispersion since there is 
no mean drift in these two directions. 

An even clearer picture of particle dispersion anisotropy in the three directions is 
displayed in figure 1O(c, d ,  e ) .  The threc figures show the projections, on two vertical 
planes (yz, xx) and a horizontal plane (xy) respectively, of the instantaneous 
trajectories in gravity environment, during the same period of time, of 8 corn 
particles (A), 8 copper particles (C) and 8 fluid points (FP). Each set of 8 particles was 
selected from the total of 10648 particles whose trajectories are computed. At 
injection, the solid particles and fluid points exist along the horizontal line of 
intersection of the horizontal plane z = 0.52 and the vertical plane x = 0.52. The 
particles are equally spaced in the y-directions betwecn y = 0.04 and y = 0.96. 

Figure lO(c) shows the projected trajectories of the solid particles (solid lines) and 
fluid points (dashed lines) on the vertical plane (yz). The eight short lines are the 
trajectories of the corn particles, and the eight long lines are those of the copper 
particles. Figure 10(d) presents a side view of the same trajectories while figure 10(e) 
shows the view from the top. 

It is seen that the fluid points disperse laterally in the x- and y-directions more 
than the corn particles, and these in turn disperse more than the copper particles. The 
local three-dimensional stretching and bending of a large eddy control the 
displacement of the fluid point which is an integral part of the fluid element. As a 
result, the eight fluid points do not exhibit any preferred direction of dispersion. The 
statistically isotropic dispersion obtained from the trajectories of all the 10648 fluid 
points is also evident by comparing the instantaneous displacement of the fluid 
points in figure lO(c, d ,  e ) .  The solid particle, on the other hand, owing to its own 
inertia and the acceleration of gravity, cannot follow the fluid point but moves 
mainly downward in the gravity direction, while simultaneously responding to the 
lateral fluctuations caused by the local turbulence. It should be recalled here (from 
992 and 4) that our computation domain is moving with a constant mean stream 
velocity in the direction opposite to gravity. This means that in a wind tunnel (e.g. 
that of SL) all the particles will be advected upwards but the copper particles will 
always lag behind the corn particles or the fluid points. 

As discussed earlier (§6.2), Csanady (1963) postulated that the particle velocity 
autocorrelation should have a negative loop if 17~1~1. Figure 1O(c, d )  indicates 
that this condition is met for the copper but not for the corn particles, again in accord 
with the negative loop in RLp,l for the copper particle in figure 9(a).  

It is of interest to compare the computed time development of ( x i , l ( t ) )  for both 
a solid particle and its corresponding fluid point with that obtained analytically by 
Taylor’s theory (1921) of ‘diffusion by continuous movements’. It should be noted 
that Taylor’s theory was formulated for a fluid point in a stationary homogeneous 
turbulence. However, the stationarity condition can be relaxed owing to the self 
preservation property of turbulence during the initial period of decay. As discussed 
in $6.2, during this period the turbulence energy E - x-l, u - 2-4, and 1 - xi. Thus 
the turbulent diffusivity, D, - lu, is independent of distance from the grid as in the 
case of stationary turbulence for times greater than the Lagrangian timescale. This 
self preservation property of grid turbulence allows the comparison of the computed 
(x&,  l ( t ) )  of a fluid point with that obtained by Taylor’s theory. 

Now, care is needed when applying this theory to  the dispersion of a solid particle 
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in gravity environment. The theory requires that the velocity of the fluid point be 
random. This condition allows us to examine effectively the solid particle motion 
only in the plane perpendicular to the direction of gravity because gravity imposes 
a significant (non-random) force on the particle in the vertical direction. For 
example, if the ratio vt/u, %- 1 the particle will fall vertically downward without any 
appreciable randomness in velocity in that direction. Therefore we limit the following 
discussion to the dispersion of the fluid point and solid particle in the xl- (or x2-) 
direction. 

The main result of Taylor's theory, relevant to our study, is that for a fluid point, 

(x;(T)) = 2 ( 4 )  

where R, is the Lagrangian velocity correlation coefficient of the fluid point. More 
specifically, Taylor assumed that for 'long time ' dispersion 

[R,dr = I ,  

where I is a finite value. This 'long time' is generally taken as (t 2 5TLJ (Monin & 
Yaglom 1979). This leads to 

(x:(T)) = 2(4)IT,  

d/dt(x,"(T)) = 2(u,") I ,  

in stationary turbulence. Thus, for long times, (x;(T)) of a fluid point varies linearly 
with time, and the turbulent diffusivity tends to be constant. For short times, Taylor 
showed that (x;(T)) - T 2 ,  and thus d/dt(x,"(T)) - T. Now, we examine our results 
to see whether the above relations apply to the lateral dispersion of a solid particle 
as well. 

Figure l O ( f )  shows good agreement between (x&l(t)) of the fluid point with the 
two theoretical asymptotic lines. The first line has a slope of 2 for the short-time 
dispersion, and second has a slope of 1 for the long-time dispersion. Nearly identical 
behaviour is displayed for the corn particle in zero gravity. In contrast, (xi,l(t)) of 
the corn particle in gravity environment deviates, after a short time from the start, 
from that of Taylor's theory, and the deviation increases with time. As discussed in 
$6.1, at longer times the particle becomes more influenced by gravity than by its own 
inertia (Yudine 1959). Also displayed in figure l O ( f )  is (xi,l(t)) of the copper particle 
with gravity, and as expected the deviation from the theoretical asymptotes is now 
far greater than that of the corn particle. Now, our computed Lagrangian velocity 
correlation coefficients for the solid particles show that RLp, < RLp, l(zerograv) 

(figure 9a) owing to the crossing trajectories effect. Furthermore, in gravity, the 
variance (v;) of the solid particle decays faster than (u;) of the fluid, as evident in 
the experiment of SL and our simulations (not shown). In addition, the decay rate 
of (v;) is a nonlinear function of (vt/uo), and does not follow the established 
behaviour of (u;) - t-' of decaying turbulence. Therefore, whereas (u,") was 
constant in Taylor's derivation for stationary turbulence, (vt) of the solid particle 
in gravity cannot be, and thus the double time-integration should be made over the 
product (v;) R,. Our simulations indicate that the time decay rate of the quantity 
( v i ) R ,  for the particle produces a nearly constant (xi,,(T)) for large T, and hence 
a vanishing d/dt(xg,,(T)) (figures 10a and l i b ) .  Note that these results cannot be 
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FIGURE 11. (a) Normalized turbulent diffusivities in the lateral direction (5) in zero gravity. A -, 
corn; FP --, fluid point. ( b )  Normalized turbulent diffusivities in the lateral direction (2). A, 
corn ; B, solid glass ; C, copper; FP, fluid point ; -, in gravity ; - -, zero gravity. Snyder & 
Lumley : 0 ,  corn, 0, solid glass and copper. (c) Normalized turbulent diffusivities of the particles 
in gravity, in the gravity direction (2). 

attributed to the non-stationarity of the decaying turbulence of the carrier fluid, 
since (X:,~(T)) of the same particle in the same flow, but in zero gravity increases 
linearly with T (figure lOa,f) .  

In summary, gravity effects prevent (X:,~(T)) of the solid particle from increasing 
linearly with time, and restrict it to a nearly constant value for long times. 
Consequently, the turbulent diffusivity of the particle in gravity approaches zero 
asymptotically (figure 11 6 ) .  

The accuracy of computing the statistics of particle dispersion is demonstrated 
again by comparing the time development of of the copper particle using S3, 
163, B3 and 323 particles in figure 10 (9)  (denoted A ,  B,  C and D respectively). Table 
4 presents the percentage difference at t = 4.5 in the mean square displacement of the 
particle, (x;,~), and RLP,1(7) for the three realizations using S3, 163 and 223 particles 
with respect to a simulation using 323 particles. These tests were performed using the 
same Eulerian flow field. In addition, we have performed other tests, not reported 
here, using different Eulerian realizations. These were obtained using the same mesh, 
963, and RA0 and the same number of particles, but varying the initial r.m.s. velocity, 
u,*, or the value of kP/kmi, in the initial spectrum E ( k ,  0). Increasing u$ by 50%, or 
decreasing kP/kmi, from 6 to 4 (thus increasing l o ) ,  resulted in less than 1 YO change 
in either (x:,~) or RLpsl.  
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Xumber of particles Difference in (xi ,I)  Difference in R,,,, 

163 1.0% 16% 
223 0.89 Yo 0.75 % 

TABLE 4. Percentage difference in the copper particle statistics a t  t = 4.5 with respect to those 
obtained from 323 particle simulation 

83 2.0 Yo 25 y o  

6.4. Particle turbulent diffusivity 
It can be shown by assuming a diffusion equation for the probability of the 
displacement of a fluid point (Batchelor 1949) that the turbulent diffusivity, in 
homogeneous turbulence is related to its mean-square displacement via 

This relation can also be obtained dircxtly using only dimensional arguments 
(Tennekes & Lumley 1972). 

Based on the results of Taylor's theory presented in the preceding section, it is 
expected that the diffusivities Dp, i  and D,,,, of the solid particle in zero gravity and 
its corresponding fluid point to  vary linearly with time. for short dispersion times, 
and be independent of time for long times. Figure l l (a ) ,  which shows the time 
development of D,,, and Drp,$ for the corn particle in zero gravity, supports this 
conclusion. Again, as was shown in figure 10(a),  the solid particles in zero gravity, 
owing to  their finite inertia, disperse laterally fast)er than their corresponding fluid 
points. 

It is possible to define a turbulent Schmidt number for the dispersion of solid 
particles as 

where the diffusivities are those of long dispersion times. In zero gravity, ' - r ~ , , ~  for the 
corn particle in the lateral direction equals 0.94 (figure 11 a) .  

The role of gravity in reducing the turbulent diffusivity in the lateral directions, 
hence increasing ScPvi of the solid particles is evident in figure 11 ( b )  which shows the 
developments of D,,l(t) for the corn particle with and without gravity. Also shown 
are the numerical and experimental Dp, l ( t )  for the glass and copper particles. It is 
seen that gravity causes D,, l ( t )  to decrease monotonically with time, after the initial 
period. The corresponding values of Sc,, for the corn and copper particles are 4.3 and 
55, which are significantly higher than those in zero gravity. 

The agreement between the numerical and experimental values of D, , l ( t )  is good 
for the corn particle and reasonable for the other particles considering the difficulty 
in obtaining accurate time-derivatives of (xi,t(t)) from a photocopy of the published 
curves of SL. 

Figure 11 ( c )  displays Dp,B(t) for the three particles in the gravity direction. It is 
evident that Dp,3 ( t )  varies linearly with time, indicating that ( ~ i , ~ ( t ) )  - t2 ,  i.e. 
parabolic in time as was discussed in $6.3. Consequently. D,,,(t) does not attain an 
asymptotic value. It is significant to note the relatively large magnitudes of Dp,3 ( t )  
as compared to D,.,(t) and D,.,(t). Here we rcvall the discussion in 56.3 concerning 
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the true turbulent dispersion and conclude that only Dp,  ,(t) and Dp,z( t )  represent the 
turbulent diffusivity of the solid particle. 

6.5. More about the effects of inertia 
In  the preceding sections, the effects of inertia on particle dispersion were discussed 
by comparing the behaviour of a solid particle in zero gravity to that of the 
corresponding fluid point. However, the range of particle response times already 
prescnted (which is nearly the same as of SL) is relatively narrow. The ratio of the 
largest T ~ , ~  to the smallest is 2.48 as shown in table 1. In  order to expand this range 
and see whether the results obtained so far can be safely generalized to cover much 
heavier particles we performed a simulation for an additional particle whose T , , ~  

equals 0.505 s which is 18.7 times that of the corn particle. This new particle can be 
considered a corn particle of diameter d = 376 pm instead of 87 pm of the original 
corn particle, or a uranium particle (p, = 19 x lo3 kg/m3) with diameter d = 87 pm. 
In  either case the particle diameter is less than the Kolmogorov lengthscale of our 
decaying turbulence. In  order to facilitate the discussion of the results we will refer 
to the new particle as the ‘uranium particle ’. The simulation for the uranium particle 
is in zero gravity in order to examine the effects of inertia. Since the turbulence is 
isotropic, only the statistics in the x,-direction are presented. 

Figure 12 ( a )  shows the time development of the autocorrelation RLp, , for the corn, 
copper and uranium particles, the solid lines labelled A, C and D respectively, and 
for a fluid point (dashed line). The main difference between R,,,, of the uranium and 
the other two particles is that, initially, the bell-shaped curve of the former deviates 
significantly from that of the fluid point, and later decays faster than the other two. 
That deviation vanishes a t  time equal to about 2.75 times T , , ~  of the uranium 
particle, and as time increases its RLp,l becomes less than that of the fluid point. 

It is appropriate here to distinguish between the effects of inertia and gravity on 
RLP,, of heavy particles in isotropic turbulence. Owing to inertia, and for short 
dispersion times, the magnitude of the autocorrelation of a heavy particle in zero 
gravity may considerably exceed that of a fluid point. At a time of about one eddy 
turnover time, T ~ , ~ ,  the decay of the fluid point autocorrelation starts to level off. The 
solid particle, again owing to its inertia, continues to  interact with new surrounding 
fluid elements, and thus its RLp, , decays a t  a faster rate than that of the fluid point. 
For example, BLp, , of the uranium particle becomes less than that of the fluid point 
a t  about five eddy turnover times. Consequently, the diffusivity of the heavy particle 
in zero gravity, DP,,(t), may exceed that of the fluid point initially, but for long times 
the reverse takes place as shown in figure 12(b). 

Gravity, on the other hand, reduces R,,,, of the solid particles relative to that of 
the fluid points only in the lateral directions and increases it in the gravity direction 
(figure 9a,  b )  as discussed in $6.2. Note that the deviation of RLp,3 from that of the 
fluid point increases indefinitely (figure 9 b ) .  

It is therefore evident that gravity always reduces particle dispersion in the lateral 
directions, whereas inertia may increase dispersion during the initial period and 
decrease i t  for longer times, especially for relatively heavy particles with T ~ / T ~  of 
order 1.  Thus the combined effect of the two mechanisms is that the rate of lateral 
dispersion of a heavy particle, DP,Jt), in gravity environment is always less than that 
of a fluid point and it decreases monotonically with time as shown in figure 11 (b ) .  
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FIGURE 12. (a) Lagrangian velocity autocorrelations of the particles in zero gravity and fluid points 
in the lateral direction (2). A, corn; C, copper; D, uramium; FP, fluid point. ( b )  Kormalized 
turbulent diffusivities in zero gravity, in the lateral direction (2). 
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6.6. Lagrangian velocity frequency spectrum 
In this section we discuss the spectral response of a solid particle to the turbulent 
velocity fluctuation of its surrounding fluid. The approach is to follow the particle, 
in the time domain, and calculate for both the particle and its host fluid the 
turbulence energy content a t  all resolved frequencies. The highest frequency in the 
spectrum is the Kolmogorov frequency, wK = z / rK ,  and the smallest is associated 
with the large-scale motion. The most suitable quantity for our purpose is the 
Lagrangian velocity frequency spectrum, EL(w,) ,  which is the cosine transform of the 
velocity autocovariance, Ri,(7), and is defined as : 

where 

R,,(7) = ( v i ( to )v i ( to+~) ) ,  w, = (nn ) / (NAt ) ,  

is the timestep used in integrating (1) and (3) for the particle velocity and position 
respectively, and N is the total number of timesteps. It should be noted that (28) is 
strictly valid for statistically stationary turbulence. 

In order to distinguish between the effects of inertia and gravity on the frequency 
spectrum of the particles we compare the spectra in gravity and zero gravity 
environments. 

Only the spectra associated with the lateral velocity in the x,-direction are 
presented since they are nearly identical to those in the x,-direction, and since the 
turbulent velocity fluctuations in these lateral directions are not overshadowed by 
the mean drift velocity as is the cae in the x,-direction. 

Figure 13 ( a )  shows the spectra for the corn and uranium particles (labelled A and 
D respectively) and their associated surrounding fluids in zero gravity. We did not 
include the curves of other particles in order to make the figure easier to read. The 
abscissa is the frequency normalized by the Kolmogorov frequency, wK = n/~,,, ,  a t  
the initial time T = 2.67 (table 1) .  It is seen, as expected, that most of the turbulence 
energy for the fluid and particles is associated with the low-frequency motion. For 
frequencies higher than the Kolmogorov frequency, i.e. w / w K  > 1.0, all the spectra 
level off and then oscillate with very small amplitudes. This is due to numerical noise 
introduced in the spectral mapping of the velocity at  the unresolved high frequencies. 
This also indicates that the sampling time interval is small enough to capture all the 
spectral information pertaining to the true physical behaviour of the particles and 
their surrounding fluid. 

It is seen, in this zero gravity case, that E,L(w) of the corn exceeds that of its 
surrounding fluid a t  all frequencies except near oK. On the other hand, E;(w) of the 
heavier uranium particle is less than its E$(w) for medium to high frequencies and 
exceeds it only at low frequencies. Also the magnitude of deviation between the 
energies of the particle and its surrounding fluid is higher for the heavier particle. 
Now, the finding that E,L(w) can exceed E$(w) seems to contradict Csanady’s theory 
(1963) which gives the ratio of the two spectra as 

n =  1, ...,a, t j  =jAt ,At  

indicating that E,L(w) never exceeds E,LP(w). However, (29) was derived for the case of 
statistically stationary turbulence. In  a decaying turbulence, as in our simulation, 
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FIQIJRE 13. (a) Lagrangian velocity frequency spectrum of the particles in zero gravity and their 
corresponding surrounding fluid. A, corn ; D, uranium. -, particles ; --- , surrounding fluid for 
corn; ---, surrounding fluid for uranium. ( b )  Lagrangian velocity frequency spectrum of the 
particles in gravity and their corresponding surrounding fluid. C, copper. 
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Particle q 0  = w, ,o /Zo(~- l )  ~ / T , , ~ ( S - ~ )  

Corn 9.75 37.0 
Copper 20.73 14.9 

TABLE 5. q 0  and 1 / ~ ~ . ~  for Csanady’s inequality 

the decay rate of the kinetic energy of particles, owing to their finite inertia, is less 
than that of the surrounding fluid especially during the initial period of dispersion. 
As discussed in $6.1, the higher the inertia of the particles, the higher is their relative 
velocity and the smaller the rate of decay of their kinetic energy. 

Indeed the source of energy for the low-frequency part of the spectrum of a heavy 
particle is its highly correlated (large Rii(7)) velocity due to its finite inertia. In the 
corresponding part of the surrounding fluid spectrum, E$(w),  which is associated 
with the large-scale motion, the energy results from the less correlated velocity of the 
host fluid whose identity changes continuously along the particle path, and whose 
energy decays with time, hence the lower energy. Now, at  higher frequencies, the 
heaviest particle (uranium), owing to its relatively large 7,’ is unable to follow the 
fluid velocity fluctuations, hence the lower value of E,L(w) as compared to E;(w).  On 
the other hand, E,L(o) of the lighter particle follows closely its E$(w) and even exceeds 
it in magnitude. Again, Csanady’s relation (29) would not be able to predict these 
results. 

In the gravity case, figure 13 (b )  shows the spectra of the corn and copper particles 
and their surrounding fluid. At the low-frequency end, we observe the same 
behaviour as in the zero gravity case, i.e. the particle energy is higher than that of 
the surrounding fluid. 

At medium and high frequencies, i t  is seen that gravity reduces the particle energy 
relative to that of the surrounding fluid. Thus the effect of gravity on particle 
response to fluid turbulence is frequency sensitive, with most of the reduction of 
particle energy relative to that of the surrounding fluid occurring at  medium and 
high frequencies. The reverse takes place at  lower frequencies. 

We also compared the energies E,  and E,,, where 

E, = 1; E,L(w) dw, 

and found, for both the corn and copper particles, that E, is higher than Esf. 
However, this is mainly due to the energy content of the lower-frequency part of the 
spectrum where most of the energy resides. The contribution of the high-frequency 
part of the spectrum to the energy is not significant. 

Csanady (1963) hypothesized that if wf + 1/7,, where wf = vt/Z is the typical 
frequency of the fluid based on the turbulence lengthscale and the terminal velocity 
of the particle, vt, then the response time of the particle is sufficiently small for the 
particle to follow the fluctuations of its surrounding fluid. Table 5 shows that 
Csanady’s inequality is satisfied for the corn particle but not for the copper, and thus 
the results of figure 13 ( b )  support Csanady’s hypothesis qualitatively. 
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6.7. Time development of all the forces acting on a solid particle 

The purpose of this section is to  present the time development of all the forces acting 
on one copper particle starting from the time of its injection into the decaying 
turbulence in gravity environment. The reason for presenting the instantaneous 
forces on one particle only and not the ensemble average of the forces on all the B3 
particles is as follows. The forces change their sign continuously depending on the 
relative velocity (see (1)).  Thus, for a large enough number of particles in 
homogeneous isotropic turbulence, the positive and negative values would tend to 
cancel out, and the resulting ensemble mean force, except that due to  gravity, would 
approach zero. 

The components in the three directions of the drag and Basset forces, and those 
due to pressure gradient, added mass and gravity are presented first (in dynes) 
without normalizing to provide a set of 'raw data '  that  can be of benefit to 
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experimentalists and developers of mathematical models. Secondly, the forces in a 
given direction are normalized by the drag in that direction to examine their relative 
significance. 

Figures 14(a), 14(b) and 14(c) display the time development of the forces, in the 
x,, x, and x3 directions, respectively, acting on one copper particle, selected randomly 
from the total of 10648 particles tracked. Figures 14(d), 14(e) and 14(f) show the 
forces normalized by the drag. As explained in $2, the forces acting on each of the 
B3 particles are calculated at each timestep from the instantaneous velocities of the 
particle and its surrounding fluid. 

The following observations can be made from figure 14 (a-f) : 
(i) The amplitudes of the fluctuations of the relative velocities and forces in the 

lateral directions (2, and z2) diminish with time, indicating that the particle velocity 
is asymptotically approaching that of the decaying turbulence as discussed in $6.1. 

(ii) The buoyancy force is about three times the drag in the gravity direction. In 
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the lateral directions, the drag and Basset forces are the main forces although the 
former is a t  least one order of magnitude higher than the latter. 

(iii) The extremely high magnitudes ( 9  1) of the normalized forces correspond to 
the instances of nearly zero drag (i.e. zero relative velocity) and should be ignored as 
singularities since the magnitudes of thcse forces in dynes are orders of magnitude 
less than the drag. 

In order to  determine the effect of including the pressure, added mass, and Basset 
forces in (1) on the particle dispersion statistics, a simulation with only the drag and 
gravity forces was performed for the corn and copper particles. Table 6 lists the 
maximum percentage differences in the dispersion statistics of a simulation ( a )  with 
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FIGURE 14(d). For caption see p. 697. 

only the drag and gravity forces included, with respect to another simulation ( b )  with 
all the five forces included. The maximum difference shown in table 6 is 3.8% for the 
Lagrangian integral timescale. This difference is due to the inclusion of the Basset 
force in the particle motion equation since the pressure gradient and added mass 
forces are one to three orders of magnitude smaller than the Basset force, as indicated 
in figure 14(a-f). 

7. Conclusions 
We presented a numerical method by which the three-dimensional, time-dependent 

velocity field of a homogeneous, isotropic decaying turbulence was computed 
directly (DNS). A numerical grid containing 963 points was sufficient to  resolve the 
turbulent motion a t  the Kolmogorov lengthscale (1.15 < yk,,, < 3) for a range of 
microscale Reynolds numbers starting from R, = 25 and decaying to R, = 16. The 
dispersion characteristics of three different solid particles (corn, copper and glass) 
injected in the isotropic non-stationary flow, were obtained by integrating the 
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Parameter Corn Copper 

3.8% 1.6 YO 
3.8 Yo 1.5 Yo 

TL, 

TL, 
T L  
(5.1) 0.5 Yo 0.2 % 
(x;.*) 0.2 Yo 0.2 % 
(x2 3) -0.1 Yo 0.0 Yo 

-0.3% -0.1 Yo 

<'!I, ,)(peak) -3.0% -2.0% 
(vL, 2)cpeak) -3.0% -2.0% 

TABLE 6. Percentage differences between simulations (a )  and (6) for various Lagrangian 
statistics 
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FIGURE 14. Forces (dynes) on the copper particle ( a )  in the lateral direction (r) ,  ( b )  in the lateral 
direction (y), (c) in the gravity direction ( z ) ,  ( d )  in the lateral direction (5) normalized by the drag 
force, (e) in the lateral direction (y) normalized by the drag force, ( f )  in the gravity direction (z) 
normalized by the drag force. DR, drag ; BA, Basset ; PR, fluid pressure gradient ; AM, added mass ; 
GR, gravity. 

complete equation of particle motion, (l) ,  along the instantaneous trajectories of B3 
particles for each particle type, and then performing ensemble averaging. The three 
different particles were those used by Snyder & Lumley (1971), referred to 
throughout the paper as SL. Because of the lower Reynolds number in DNS, certain 
scaling of the relevant timescales is necessary (12) and (13)). 

Good agreement was achieved between our DNS results and SL measurements for 
the time development of the mean-square displacement of the particles. This 
agreement indicates first that although R, in our simulation is about a third of that 
in the experiment, there is sufficient nonlinear interaction between the resolved 
wavenumbers to simulate 'real ' turbulence (figure 3). Secondly, the numerical time 
integration of the Lagrangian motion equation (1) of the particle, including the 
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Hermitian interpolation scheme for calculating the velocity of its surrounding fluid, 
is quite accurate. Thirdly, the statistics of particle dispersion obtained from the 
ensemble of 223 particle trajectories is of acceptable accuracy. 

The simulation results also include the time development of the mean-square 
relative velocity of the particles, the Lagrangian velocity autocorrelation and the 
turbulent diffusivity of the particles and fluid points. Thc Lagrangian velocity 
frequency spectra of the particles and their surrounding fluid, as well as the time 
development of all the forces acting on one copper particle are also presented. In  
order to  distinguish between the effects of inertia and gravity on the dispersion 
statistics we compare the results of simulations made with and without the gravity 
force included in ( 1 ) .  

The main objective of the paper is to  enhance the understanding of the physics of 
particle dispersion in a simple turbulent flow by examining the simulation results 
described above and answering the questions of how and why solid particles behave 
the way they do. Some of the interesting findings of the work is summarized below. 

(i) The crossing trajectories (Yudine 1959) and the continuity effect (Csanady 
1963) associated with it are manifested in the occurrence of negative loops in the 
Lagrangian velocity autocorrelations of heavier particles in the lateral directions. 
These negative loops do not exist in zero gravity. 

(ii) For all particles in gravity environment, the magnitudes of the Lagrangian 
autocorrelations of the surrounding fluid are less than those of particles, and the 
higher the response time of the particle, the lower is the autocorrelation of the 
surrounding fluid. 

(iii) The ‘ true ’ effects of turbulence on solid particle dispersion can be ‘ seen ’ only 
in the lateral directions since the drift velocity can overshadow the turbulent 
velocity fluctuations. 

(iv) The theory of Taylor (1921) on the turbulent diffusion of fluid points can be 
applied directly to solid particles in zero gravity. Large deviations from the theory 
occur for long dispersion times in gravity environment owing to the crossing 
trajectories effect (figure l O f ) .  This effect manifests itself in the decay of the product 
(v:> R,, and not just in the decrease of R,. 

(v) The inertia of a solid particle may cause its turbulent diffusivity in zero gravity 
to exceed that of its corresponding fluid point, i.e. the turbulent Schmidt number of 
a particle in zero gravity is less than unity, for short dispersion times. For long 
dispersion times, in zero gravity, the diffusivities of both reach asymptotic values, in 
agreement with Taylor’s theory. I n  gravity environment, and for long times, the 
turbulent diffusivity of a solid particle, in the lateral directions, decreases 
monotonically thus eventually increasing its turbulent Schmidt number by orders of 
magnitude above that in zero gravity. This reduction of lateral dispersion of the 
particle at long times is due to both inertia and gravity. 

(vi) The Lagrangian velocity frequency spectra of the particles in zero gravity 
show that a t  low frequencies, the turbulence energy of each of the considered 
particles exceeds that of the corresponding surrounding fluid. This result contradicts 
Csanady’s theory (1963), for the ratio of particle energy to that of the surrounding 
fluid, when used in decaying turbulence. 

In  gravity environment, the ratio of particle energy to that of the surrounding 
fluid is frequency sensitive. That is, gravity reduces particle energy a t  medium and 
high frequencies, in the lateral directions, below that of the surrounding fluid. The 
reverse takes place at lower frequencies where particle energy becomes higher than 
that of the surrounding fluid. 
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(vii) The study of the time development of all the forces acting on a solid particle 
shows that in the gravity direction the buoyancy and drag forces dominate the 
particle behaviour, and the former may exceed the latter. In the lateral directions, 
the drag and Basset forces are the main forces although the former is at least one 
order of magnitude higher than the latter. 

The computations presented in this paper have been performed on the 
supercomputers Cray XMP/48, Cray YMP and Cray 2 at two computer centres 
whose support is greatly acknowledged and without which this work could not have 
been accomplished. These centres are the San Diego Supercomputer Center (SDSC) 
and the Numerical Aerodynamic Simulation (NAS) a t  NASA- Ames. This work was 
also supported in part by the University of California, Irvine, through an allocation 
of computer time on the Convex-C24O supercomputer. 
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